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This document accompanies an Octave tutorial. It contains the text and the graphical 
output of the tutorial. It gives a first idea what all this is about. Still, it’s much more fun 
to actually play with the equations. And if you are interested in compass 
development, you will appreciate the simulation environment. So please setup 
Octave and run the tutorial scripts. 
 
The files part1.m to part4.m are both, the text of a tutorial as well as the tutorials 
Octave scripts. You may just read through them though it is quite handy to see the 
math actually executed. Walk your way through the parts. Part 1 starts with the 
Octave setup. 
 
Arnold Neugebauer



 

Part 1 
 
Motivation 
This is a tutorial dealing with the math behind tilt compensation in an electronic 
compass. 
I have seen several datasheets from sensor manufacturers stating inaccurate 
equations and/or missing the underlying conventions (axes, angles, direction of 
rotations). That is why I will explain the topic starting from the basics to the final 
equations. 
 
The less abstract Euler angles (or Euler's angles or Eulerian angles) are used, 
choosing one of several possible conventions for them. Note that another approach 
uses quaternions instead. 
 
Setup Octave 
Octave is a program for performing numerical computations. The homepage is 
www.gnu.org/software/octave. Download and execute the installation package. For 
Windows this is currently Octave-3.0.5_i686-pc-mingw32_gcc-4.3.0_setup.exe. 
 
You may want to alter some settings. The script 
<install dir>\share\octave\3.0.5\m\startup\octaverc 
is executed on every startup of Octave. You can for example shorten the prompt with 
PS1( "> " ). 
 
To set the startup path to the directory of your own scripts simply alter the properties 
of the Octave icon. Right click on it, click "Properties" and then edit the "Start In:" 
folder. 
 
For the graphical output of this tutorial an aspect ratio of 1:1 is best to see the 
drawings undistorted. I have'nt found a way to control the aspect ratio within Octave. 
A workaround is to set the Gnuplot window to a fixed size. The GraphSize is set in 
Documents and Settings\<user>\Application Data\wgnuplot.ini. (If the file does not 
exist generate it by selecting Options->Update wgnuplot.ini in the menu of a plot.) 
 
The following should create an undistorted output. You can rotate the drawing with 
the left mouse button pressed. Rotate it until you get a 2D view on one plane (for 
example the x-y-plane). Alter GraphSize until the following creates a graphical output 
in which the axes in vertical and horizontal direction are displayed with the same 
length. 
 
clear           %undefines all variables 
hold( "off" )   %next plot command will delete former output 
rot = eye( 3 ); %see next part for details 
plotaxes( rot, 3, 0.05, 0, "k" ) 
title( "Aspect Ratio Setup" ) 
 
A script, for example the part1.m you are currently reading, is simply executed by 
entering its name "part1" on the command line of Octave. 
 



 
 

 



Part 2 
 

Basics 
To display results we use vectors a lot. A vector in this tutorial is represented by its 
start and its end point. It is organized as [xstart ystart zstart; xend yend zend]. To plot 
a vector in this form, the function plotvector() has been implemented. To first plot our 
coordinate system plotaxes() can be used, which in turn calls plotvector() three times. 
The arguments of plotaxes are explained later on. 
 
clear 
hold( "off" ) 
rot = eye( 3 );                  %see below for details 
plotaxes( rot, 3, 0.05, 0, "k" ) %k=black 
hold( "on" )                     %following plot commands will add to the 
former output 
vector = [ 0, 0, 0; 1 1 1 ]; 
plotvector( vector, "r" )        %r=red 
title( "Plot Vector" ); 
kbhit();                         %press return to continue the script 
 

 
 
Tilt compensation of a compass is dealing heavily with rotations. A rotation in 3D can 
be described with a 3x3 rotation matrix. Every rotation can be split up into the three 
rotations about the axes of the coordinate system. To easily define a rotation about 
the x-, y- and z-axis respectively the three functions rotx(), roty() and rotz() have been 
implemented. The total rotation is then simply the multiplication of all three. 
 
The function plotaxes() lets us define the attitude of the coordinate system to draw. 
The first parameter is the rotation, the second the length of each axis. The next 3 



parameters define the size/position of the XYZ characters drawn at the axes and the 
color. Type 'help plotaxes' for details. 
Lets again draw our black reference system. The rotation is 0, so we call plotaxes() 
with the unity matrix eye(3) as rotation. Then lets draw another blue coordinate 
system with some arbitrary attitude. Don't be bothered by the angles, direction of 
rotations etc. We'll get to that later. 
 
clear 
hold( "off" ) 
rot = eye( 3 ); 
plotaxes( rot, 3, 0.05, 0, "k" ) 
hold( "on" ) 
rot = rotx( 10 ) * roty( 10 ) * rotz( 30 ); 
plotaxes( rot, 1, 0.05, 0, "b" ) 
title( "Plot Coordinate Systems" ); 
kbhit(); 
 

 
 
Octave lets us rotate a vector given in the form above simply by multiplying it with the 
rotation matrix, thus vector_rotated = vector * rot. This will rotate both, the start and 
the end point, at the same time. 
 
vector = [ 0, 0, 0; 1 1 1 ]; 
plotvector( vector, "r" ) 
vector_rotated = vector * rot; 
plotvector( vector_rotated, "m" ) 
title( "Plot Rotated Vector" ); 
kbhit(); 
 



 
 
Ok, now let's go into that a bit more precisely. Like the definition of the coordinate 
system (relativ orientation of the axes, where is positive etc.) it is also required to 
define the direction of rotations. We define the rotations mathematicaly positive. Seen 
the xy-plane from above (looking in the negative z direction), the rotation about z is 
counter-clockwise. The x-axis is 0 degrees, the y-axis 90 degrees. The same for the 
other axes. 
 
draw_definition 
title( "Definition of Axes and Angles" ); 
kbhit(); 
 



 
 
It is essential to understand that in a sequence of rotations the rotations can't be 
exchanged (non-commutative). In the following the result is not the same: 
 
clear 
hold( "off" ) 
rot = eye( 3 ); 
plotaxes( rot, 3, 0.05, 0, "k" ) 
hold( "on" ) 
rx = rotx( 20 ); 
ry = roty( 30 ); 
vector = [ 0, 0, 0; 1 1 1 ]; 
plotvector( vector * rx * ry, "r" ) %first rx, then ry 
plotvector( vector * ry * rx, "r" ) %the other way round 
title( "Non-Commutative Rotations" ); 
kbhit(); 
 



 
 
Thus we need to define which angle comes first. Intuitively the sequence is x, then y, 
then z. We will see later in the calculations why this is a clever choice. 
To reverse a rotation the angle is negated and the sequence is exchanged. 
 
clear 
hold( "off" ) 
rot = eye( 3 ); 
plotaxes( rot, 3, 0.05, 0, "k" ) 
hold( "on" ) 
vector = [ 0, 0, 0; 1 1 1 ]; 
vector_rot     = vector     * rotx(  20 ) * roty(  30 ); 
vector_rotback = vector_rot * roty( -30 ) * rotx( -20 ) 
plotvector( vector, "r" ) 
plotvector( vector_rot, "m" ) 
plotvector( vector_rotback, "k" ) 
title( "Reversal of Rotations" ); 
 



 
 
Furthermore we define that a vehicle or an airplane is heading in the positive x 
direction (if it is not rotated). The wings of an airplane would be level with the xy-
plane, its longitudinal axis on the x-axis. In this initial position all angles are 0. The 
attitude, the deviation from the initial position, can now be described by three angles: 
 roll  about the x-axis 
 pitch about the y-axis 
 yaw   about the z-axis 
 
It doesn't matter if an angle is given as 0..360 degrees or -180..+180 degrees. For 
example -90 is equal to +270 degrees. The trigonometric functions of Octave used 
later on output -180 to +180 degrees. So I prefer to use consistently -180..+180 
degrees. 
 
There is still an ambiguity left. The same attitude can be expressed by different 
combinations of roll, pitch and yaw. 
Turning the vehicle upside down can be expressed by either pitch > +-90 or roll > +-
90 degrees. For example a pitch of 160 degrees is the same as rolling 180 degrees, 
then applying a pitch of 20 degrees and flipping the vehicle in the other direction. In 
both cases the attitude and the rotation matrix is the same: 
 roll  =   0       roll  = 180 
 pitch = 160  <=>  pitch =  20 
 yaw   =   0       yaw   = 180 
 
When applying a pitch larger than +-90 degrees the nose of the vehicle is suddenly 
pointing backwards. This changes the heading without altering yaw. Also the 
direction of roll is reversed. An ill-suited behaviour. 
Roll, on the other hand, does not alter the heading. Even when turning the vehicle 
upside down with roll larger than +-90 degrees. 
Therefore, by convention, pitch is limited while the full range for roll is admitted: 
 -180 <  roll  <= 180 



  -90 <= pitch <=  90 
 -180 <  yaw   <= 180 
 
(To be exact: The combinations 0/+-90/0 and 180/+-90/180 describe the same 
attitude. Nevertheless they are both admitted. Why? +-90 is a special case anyway. 
Heading is not defined. Roll (and with that all other angles) can't be determined from 
the sensor outputs. We will see that later. So +-90 degrees has to be excluded from 
the final heading calculation anyway. Admitting both combinations allows to decide 
only on pitch during the conversion of combinations.) 
 
By looking at some combinations describing the same attitude we can derive a 
method to convert between them. Converting an angle combination not conforming to 
the convention is done by flipping all directions and inverting pitch: 
 
clear 
disp( "Rotation matrices for equal angle combinations:" ) 
roll  =   0 
pitch = 160 
yaw   =   0 
rot = rotx( roll ) * roty( pitch ) * rotz( yaw ) 
if( (pitch > 90) || (pitch < -90) ) 
   roll = roll + 180;  %flip 
   if( roll > 180 )    %pull into standard range 
      roll -= 360; 
   endif 
                   
   pitch = pitch + 180; 
   if( pitch > 180 ) 
      pitch -= 360; 
   endif 
   pitch = -pitch;     %invert pitch 
                   
   yaw = yaw + 180; 
   if( yaw > 180 ) 
      yaw -= 360; 
   endif 
endif 
roll 
pitch 
yaw 
rot = rotx( roll ) * roty( pitch ) * rotz( yaw ) 
 
Later on in the next parts of this tutorial we will do both, calculating sensor outputs 
from angles given and - the other way round - calculating angles from sensor outputs. 
You can go into the calculations with any arbitrary angle combination. The angles 
calculated, however, will conform to the convention above. This is analog to the 
behaviour of trigonometric functions. The ranges of the inverse functions are subsets 
of the domains of the original functions. 
 
With all these conventions the attitude, the deviation from the initial position, can now 
unambiguously be described. 
 
 
 



 

Now that we are all setup we can go to the actual math. Tilt compensation is done 
in two steps. First the attitude of the vehicle or airplane is determined using the 
output of an acceleration sensor. This is described in part 3 of this tutorial. The 
second step is the heading calculation including the tilt compensation based on 
the attitude. Part 4 will go into details about this. 



Part 3 
 
Determining the Attitude 
In the following we will derive a model. That is we will draw the ground-fixed 
reference system, the tilted vehicle-fixed system and acceleration vectors. 
This is quite handy. We can play with the model and see what happens. Finally, by 
expanding the calculation with matrices and vectors, we get the equations to 
implement in the electronic compass. 
 
The following defines an arbitrary attitude and plots the ground-fixed as well as the 
vehicle-fixed system. Also the positive and negative rotation matrices are calculated 
beforehand. 
 
clear 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
 
roll  =  30; %x 
pitch =  10; %y 
yaw   =  10; %z 
 
rxp = rotx(  roll ); 
ryp = roty(  pitch ); 
rzp = rotz(  yaw ); 
rxn = rotx( -roll ); 
ryn = roty( -pitch ); 
rzn = rotz( -yaw ); 
rp  = rxp * ryp * rzp; %first rotate about x, then y, then z 
rn  = rzn * ryn * rxn; %sequence the other way round! 
 
plotaxes( rp, 10, 0.5, 0, "b" ) 
 
Next the acceleration vector. It points up. We just make everything in the model 
positive for now. It's easier to understand. Later on we can make it point down just by 
exchanging signs. 
The magnitude is arbitrarily chosen. In a real system the magnitude is the maximum 
sensor output in the earth field found out by calibration. 
The postfix _g means that a vector is described based on the ground-fixed 
coordinate system. Variables with postfix _v are described based on the vehicle-fixed 
coordinate system. 
 
acc_strength = 18; 
acc_g = [ 0 0 0; 0 0 acc_strength ]; 
plotvector( acc_g, "r" ) 
title( "Initial Position" ) 
kbhit(); 
 



 
 
At this point we have our reference system and a vehicle system somehow tilted in 
the 3D space. acc_g is an object in the space. For calculations in the vehicle system, 
the general trick is to transform the tilted vehicle system to the reference system. 
Calculations are done conveniently there in a standard way. All objects are 
transformed in the same way, so that their relative position to the vehicle system 
remains constant. After the calculations have been done the vehicle system and all 
objects are transformed back / tilted again. The transformations are coordinate 
transformation or rotations respectively. Calculations here are just the simple split-up 
of a vector in its three components. 
 
The next Octave commands draw the vehicle-fixed system and the acceleration 
vector again. This time rotated against the attitude of the vehicle. The vehicle-fixed 
system becomes the same as the ground-fixed system. The acceleration vector is 
now slanted but its position relative to the vehicle-fixed system has not changed. 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rp * rn, 10, 0.5, 0, "b" ) %same as plotaxes( eye(3), 10, 0, "b" 
) 
acc_v = acc_g * rn; 
plotvector( acc_v, "r" ) 
title( "Rotated Against Attitude" ) 
kbhit(); 
 



 
 
Now the accelertion vector can be split up into its components parallel to the axes. 
The magnitude of these vectors is the output of the acceleration sensors 
experienced. The three vectors along the axes are: 
 
accx_v = [ 0, 0, 0; acc_v(2, 1), 0, 0 ]; 
accy_v = [ 0, 0, 0; 0, acc_v(2, 2), 0 ]; 
accz_v = [ 0, 0, 0; 0, 0, acc_v(2, 3) ]; 
plotvector( accx_v, "g" ) 
plotvector( accy_v, "g" ) 
plotvector( accz_v, "g" ) 
title( "Acceleration Vector Components" ) 
kbhit(); 
 



 
 
Rotate components back to their original attitude: 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rp, 10, 0.5, 0, "b" ) 
plotvector( acc_g, "r" ) 
accx_g = accx_v * rp; 
accy_g = accy_v * rp; 
accz_g = accz_v * rp; 
plotvector( accx_g, "g" ) 
plotvector( accy_g, "g" ) 
plotvector( accz_g, "g" ) 
title( "Rotated Back to Initial Position" ) 
kbhit(); 
 



 
 
To see more precisely that the green components on the axes are in fact adding up 
to the red acceleration vector this can be drawn a little bit different. 
Let's graphically add up the green vectors of the vehicle-fixed system. accx_g 
starting from zero, accy_g vector starting at end of accx_g, accz_g vector starting 
from there. The end point of these 3 vectors must be the end point of acc_g, every 
single vector pointing in the direction of the respective vehicle-fixed axis. 
 
accy_g_offs = [ accx_g(2,:); accx_g(2,:) + accy_g(2,:) ]; 
accz_g_offs = [ accx_g(2,:) + accy_g(2,:); accx_g(2,:) + accy_g(2,:) + 
accz_g(2,:) ]; 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rp, 10, 0.5, 0, "b" ) 
plotvector( acc_g, "r" ) 
plotvector( accx_g, "g" ) 
plotvector( accy_g_offs, "g" ) 
plotvector( accz_g_offs, "g" ) 
title( "Sum of Acceleration Vector Components" ) 
kbhit(); 
 



 
 
What we are finally interested in is the relationship between the acceleration sensor 
outputs (the magnitude of the components seen on the vehicle-fixed axes) and the 
attitude of the vehicle. 
The sensor outputs are acc_v(2,:), forming the vector acc_v in the vehicle-fixed 
coordinate system. For convenience these abbreviations are used in the following: 
 
accx = acc_v(2,1); 
accy = acc_v(2,2); 
accz = acc_v(2,3); 
 
Expanding the equation acc_v = acc_g * rn from above leads to the final equations. 
Now we see why it was clever to choose the rotation sequence xyz for the vehicle. 
Rotating the other way round is zyx. Since acc_g is pointing from the origin upwards 
it is invariant to the first rotation about z. So we can leave that away, simplifying the 
equations enormously. 
   acc_v = acc_g * rn 
=> [ accx, accy, accz ] = [0 0 acc_strength ] * ryn * rxn 
=> accx =   acc_strength * sind( pitch )                 (1) 
   accy = - acc_strength * sind( roll ) * cosd( pitch )  (2) 
   accz =   acc_strength * cosd( roll ) * cosd( pitch )  (3) 
There are more equations than unknown variables what allows to solve in different 
ways. Simply taking (1) and (2) leads to the equations often found in the literature. 
The sign must be changed since in rn the angles are negative. 
 
disp( "Roll and pitch calculated using arc sine:" ) 
pitch1 = - asind( accx / acc_strength );               %y 
roll1  =   asind( accy / acc_strength / cosd(pitch1) ) %x 
pitch1 
kbhit(); 
 



However, doing this in the real world is disadvantageous. The slope of the asin 
function is strongly increasing with higher angles. Thus it gets very sensitive to noise, 
offset and gain errors. The following shows this by adding 10% noise to the sensor 
outputs (the high noise level is arbitrarily chosen but seems not to be unusual in a 
low-quality/low-cost circuit). 
 
draw_asin_error() 
kbhit(); 
 

 
 
The output can be improved significantly. Dividing equation (1) by (3) and equation 
(2) by (3) leads to expressions with atan. The slope of the atan function is increasing 
later than the asin function. 
Note that acc_strength is canceled down. So we don't need to know the absolute 
value from now on. 
 
disp( "Roll and pitch calculated using arc tangent:" ) 
roll1  =   atand( accy / accz )               %x 
pitch1 = - atand( accx / accz * cosd(roll1) ) %y 
kbhit(); 
 
draw_atan_error() 
kbhit(); 
 



 
 
Still, the error with pitch near 90 degrees gets very high. Limiting the operation to 
about +-80 degrees is acceptable for vehicles or handheld devices. Otherwise, 
however, more effort is needed to get around the noise near the poles of the 
trigonometric functions. 
In any case, when dealing with a real system, proper noise filtering/damping of the 
sensor outputs has to be applied and a plausibility check to cancel out the 
acceleration of the vehicle itself. 
 
Remember the conventions made for the output ranges in part 2 of this tutorial? 
We targeted for -180 < roll <= 180 and -90 <= pitch <=  90. A pitch of exactly +-90 
degrees, however, leads to accy = accz = 0. Roll (and with that all other angles) can't 
be determined from the sensor outputs. So a pitch of +-90 degrees has to be 
excluded from the calculations (by discarding measurements with accy = accz = 0). 
Heading is not defined anyway in this case. 
 
The last equations for roll and pitch are using atan with an output range of 
-90 < angle < 90. While this is perfect for pitch, we need to use atan2 for roll. atan2 is 
a variant of the atan function with the expanded output range of -180 < angle <= 180. 
For details type 'help atan2' on the Octave command line. 
 
Since atan2 is part of the C programming language's math.h standard library, it is 
often available. Also Octave features the built-in function. atan2d.m shows a possible 
implementation if it is not available on your system. (Be aware that sometimes 
implementations reverse the order of the parameters.) 
 
Alter roll, pitch and yaw at the beginning of the script to see the effect: 
 
disp( "Roll and pitch calculated using arc tangent 2:" ) 
roll1  =   atan2d( accy, accz )               %x 



pitch1 = - atand( accx / accz * cosd(roll1) ) %y 
 
 
 

 

In this part we derived a handy model to play around with and to verify our 
calculations. It will also be used in the next part. And we derived two equations, 
enabling us to determine the tilt of the vehicle-fixed system from its acceleration 
sensor outputs. So let's start with the actual heading calculation in the next part. 



Part 4 
 

Heading Calculation 
This part deals with the heading calculation. We will use the same approach as in the 
last part. First the whole flow is modeled by manipulating vectors and using Octave's 
matrix multiplications. Intermediate steps and results are visualized . Remember that 
you can drag the graphics around with the mouse. And be encouraged to alter the 
parameters and calculations. Play around with it to get a feeling of what's going on. 
In a second step, by expanding the calculation with matrices and vectors, we get the 
equations to implement in the electronic compass. 
 
Again, the following defines an arbitrary attitude and plots the ground-fixed as well as 
the vehicle-fixed system. Also the positive and negative rotation matrices are 
calculated beforehand. 
 
clear 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
 
roll  = 30; %x 
pitch = 10; %y 
yaw   = 10; %z 
 
rxp = rotx(  roll ); 
ryp = roty(  pitch ); 
rzp = rotz(  yaw ); 
rxn = rotx( -roll ); 
ryn = roty( -pitch ); 
rzn = rotz( -yaw ); 
rp  = rxp * ryp * rzp; %first rotate about x, then y, then z 
rn  = rzn * ryn * rxn; %sequence the other way round! 
 
plotaxes( rp, 10, 0.5, 0, "b" ) 
 
Now the magnetic field vector. It points up. Like the acceleration vector we just make 
everything positive for now. (Later, pointing down with an inclination = 70 degrees is 
more appropriate.) 
 
As of our definition from part 2, north is in the direction of the x-axis of the ground-
fixed system. Given the parameters strength and inclination the following models the 
magnetic field vector in the xz-plane. The magnetic strength has been arbitrarily 
chosen to fit in our coordinate system drawn. In a real system the strength is the 
maximum sensor output in the earth field found out by calibration. A magnetic field 
vector with a negative inclination is pointing up (towards +z) per definition. 
 
mfield_strength = 18; 
mfield_inclination = -70;        %northern europe would be about +70 
degrees 
mfieldx_g = mfield_strength * cosd( mfield_inclination ); 
mfieldy_g = 0; 
mfieldz_g = sqrt( mfield_strength^2 - mfieldx_g^2 );   %derived from vector 
length 
if( mfield_inclination > 0 ) 
   mfieldz_g = -mfieldz_g; 



endif 
mfield_g  = [ 0, 0, 0; mfieldx_g, mfieldy_g, mfieldz_g ]; 
plotvector( mfield_g, "r" ) 
title( "Initial Position" ) 
kbhit(); 
 

 
 
The question is now what sensor outputs we see on the axes of the vehicle-fixed 
system. The same trick as for the acceleration in part 3 is used. The tilted vehicle 
system and all objects are transformed to the ground-fixed reference system. The 
relative position is kept. Then calcutions are executed and finally everything is 
tranformed back. 
 
The next commands draw the vehicle-fixed system and the magnetic field vector 
again. This time rotated in the opposite direction of the vehicle attitude. The vehicle-
fixed system becomes the same as the ground-fixed system. The magnetic field 
vector is not in the xz-plane anymore but its position relative to the vehicle-fixed 
system has not changed. 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rp * rn, 10, 0.5, 0, "b" ) %same as plotaxes( eye(3), 10, 0.5, 0, 
"b" ) 
magn_v = mfield_g * rn; 
plotvector( magn_v, "r" ) 
title( "Rotated Against Attitude" ) 
kbhit(); 
 



 
 
Now the magnetic field vector can be split up into its components parallel to the axes. 
The magnitude of these vectors is the output of the magnetic field sensors 
experienced. The three vectors along the axes are: 
 
magnx_v = [ 0, 0, 0; magn_v(2, 1), 0, 0 ]; 
magny_v = [ 0, 0, 0; 0, magn_v(2, 2), 0 ]; 
magnz_v = [ 0, 0, 0; 0, 0, magn_v(2, 3) ]; 
plotvector( magnx_v, "g" ) 
plotvector( magny_v, "g" ) 
plotvector( magnz_v, "g" ) 
title( "Magnetic Field Vector Components" ) 
kbhit(); 
 



 
 
Rotate components back to their original attitude: 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rp, 10, 0.5, 0, "b" ) 
plotvector( mfield_g, "r" ) 
magnx_g = magnx_v * rp; 
magny_g = magny_v * rp; 
magnz_g = magnz_v * rp; 
plotvector( magnx_g, "g" ) 
plotvector( magny_g, "g" ) 
plotvector( magnz_g, "g" ) 
title( "Rotated Back to Initial Position" ) 
kbhit(); 
 



 
 
Graphically add up the green vectors to see more precisely that they are in fact add 
up to the red magnetic field vector: 
 
magny_g_offs = [ magnx_g(2,:); magnx_g(2,:) + magny_g(2,:) ]; 
magnz_g_offs = [ magnx_g(2,:) + magny_g(2,:); magnx_g(2,:) + magny_g(2,:) + 
magnz_g(2,:) ]; 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rp, 10, 0.5, 0, "b" ) 
plotvector( mfield_g, "r" ) 
plotvector( magnx_g, "g" ) 
plotvector( magny_g_offs, "g" ) 
plotvector( magnz_g_offs, "g" ) 
title( "Sum of Magnetic Field Vector Components" ) 
kbhit(); 
 



 
 
Ok - after having the model up and running we can now try to figure out the 
equations for the implementation. What we are finally interested in is the relationship 
between the magnetic field vector components seen in the vehicle-fixed system (the 
sensor outputs) and the heading. 
In theory it would be possible to derive them directly from the model above (like we 
did for the attitude in part3). We would have to expand magn_v = mfield_g * rn. 
Unfortunately math with the full rotation rn is very hard to do. (For the attitude we 
were lucky - the acceleration vector only had a z-component and the rotation 
sequence had been chosen to support further.) 
 
What helps is an intermediate step: First calculate the tilt-compensated sensor 
outputs and then do the final heading calculation without tilt in the xy-plane. This way 
the rotation about z is omitted in the first step to make the expansion easier. Then the 
z-component is left out since it does not contain any heading information, further 
simplifying things. In the following you will see what I mean. 
For a better understanding let's draw the vehicle-fixed system in its tilt-compensated 
position. It is rotated only about z with rzp. The xy-plane is level with the xy-plane of 
the ground-fixed system. Here again we see why it was clever to choose the rotation 
sequence xyz for the vehicle. Only with z beeing the last roation, the yaw is equal to 
the heading and the rotations about x and y can simply be left out. 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rzp, 10, 0.5, 0, "b" ) 
plotvector( mfield_g, "r" ) 
title( "Tilt Compensated Position" ) 
kbhit(); 
 



 
 
To calculate the magnetic field components we would see on the axes of the tilt-
compensated system, the trick is again to do a transformation to the ground-fixed 
system. This time only rzn is needed, not the full rn. 
(I skip rotating back for display from now on, otherwise its the same game as always 
- rotating, split up, rotating back.) 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 0, "k" ) 
hold( "on" ) 
plotaxes( rzp * rzn, 10, 0.5, 0, "b" ) %same as plotaxes( eye(3), 10, 0.5, 
0, "b" ) 
plotvector( mfield_g * rzn, "m" ) 
magnc_v = mfield_g * rzn;                    %equation (1) 
magnxc_v = [ 0, 0, 0; magnc_v(2, 1), 0, 0 ]; 
magnyc_v = [ 0, 0, 0; 0, magnc_v(2, 2), 0 ]; 
magnzc_v = [ 0, 0, 0; 0, 0, magnc_v(2, 3) ]; 
magnyc_v_offs = [ magnxc_v(2,:); magnxc_v(2,:) + magnyc_v(2,:) ]; 
magnzc_v_offs = [ magnxc_v(2,:) + magnyc_v(2,:); magnxc_v(2,:) + 
magnyc_v(2,:) + magnzc_v(2,:) ]; 
plotvector( magnxc_v, "g" ) 
plotvector( magnyc_v_offs, "g" ) 
plotvector( magnzc_v_offs, "g" ) 
title( "Tilt-Compensated Magnetic Field Vector Components" ) 
kbhit(); 
 



 
 
Note that the variables got an additional 'c' signifying the tilt-compensation. 
The magnetic field vector magnc_v seen in the tilt-compensated position is drawn in 
magenta. Keep in mind equation (1). It is needed later on. 
 
In our model we already did the transformation from the vehicle-fixed to the ground-
fixed system. For reference the magnetic field vector magn_v – the vector without tilt-
compensation - is added again to this drawing: 
 
%magn_v = mfield_g * rn   %equation (2), already calculated above 
plotvector( magn_v, "r" ) 
magny_v_offs = [ magnx_v(2,:); magnx_v(2,:) + magny_v(2,:) ]; 
magnz_v_offs = [ magnx_v(2,:) + magny_v(2,:); magnx_v(2,:) + magny_v(2,:) + 
magnz_v(2,:) ]; 
plotvector( magnx_v, "g" ) 
plotvector( magny_v_offs, "g" ) 
plotvector( magnz_v_offs, "g" ) 
title( "...+ Magnetic Field Vector Components Without Tilt" ) 
kbhit(); 
 



 
 
So, how do we get from the experienced magnetic field (the senor outputs, 
red) to the tilt-compensated magnetic field (magenta)? 
By eliminating the unknown mfield_g from equation (1) and (2) we get the 
relation between them: 
    magnc_v = mfield_g * rzn        equation (1) from above 
    magn_v  = mfield_g * rn         equation (2) from above with rn = rzn * 
ryn * rxn 
 => magn_v  = magnc_v  * ryn * rxn 
<=> magnc_v = magn_v   * rxp * ryp  equation (3) 
 
The last two equations may have been simply developed from the idea that it is 
possible to convert back and forth just by leaving out the rotation about z. 
(Though, I think, it is not obvious that this is also mathematically correct. And in fact it 
wouldn't be that simple if we hadn't chosen the rotation sequence to be xyz.) 
 
By expanding equation (3) we get the following to finally calculate the heading: 
magnx  = magn_v(2,1); %abbreviation for convenience 
magny  = magn_v(2,2); 
magnz  = magn_v(2,3); 
magnxc = magnx * cosd( pitch ) + magny * sind( roll ) * sind( pitch ) + 
magnz * cosd( roll ) * sind( pitch ); 
magnyc = magny * cosd( roll )  - magnz * sind( roll ); 
 
The z-component of magnc_v naturally is not contributing to the heading. The 
heading can finally be determined from the arrangement in the xy-plane. To better 
see this look at the drawing from the top: 
 
hold( "off" ) 
plotaxes( eye(3), 30, 0.5, 1, "k" ) 
hold( "on" ) 
plotaxes( eye(3), 10, 0.5, 1, "b" ) 
plotvector( mfield_g * rzn, "m" ) 



plotvector( magnxc_v, "g" ) 
plotvector( magnyc_v_offs, "g" ) 
plotvector( magnzc_v_offs, "g" ) 
handle_to_current_axis_object = gca(); 
set( handle_to_current_axis_object, "view", [0, 90] ) 
title( "Tilt-Compensated Magnetic Field Vector Components" ) 
kbhit(); 
 

 
 
From the figure we derive the equation: 
heading = - atand( magnyc / magnxc ) 
 
As with roll atan2 has to be used for an expanded output range. To stay well in the 
range of -180 < heading <= 180, change of sign is done by changing the sign of the 
first parameter: 
heading = atan2d( - magnyc, magnxc ) 
 
We can now check if our equations work for every attitude as expected. The stepsize 
in the script is currently set to 15 degrees to save time. Reduce it if you like: 
angle_check 
 
 
I hope you are still with me ;-) At the end the whole stuff boils down to only 5 
equations. In recapitulation here is an abstract with some additional implementation 
hints. The processing sequence how I think it should be implemented is: 
  3 axis acceleration measurement (accx, accy, accz) 
  3 axis magnetic field measurement (magnx, magny, magnz) 
  noise filter / damping 
  offset and gain error compensation 
  discard measurements with accz = 0 
  plausibility check, sqrt( accx^2 + accy^2 + accz^2 ) close to 1g 
  roll  =   atan2d( accy, accz ) 
  pitch = - atand( accx / accz * cosd(roll) ) 



  (limit operational range to +-80 degrees) 
  magnxc  = magnx * cosd( pitch ) + magny * sind( roll ) * sind( pitch ) + 
magnz * cosd( roll ) * sind( pitch ) 
  magnyc  = magny * cosd( roll )  - magnz * sind( roll ) 
  heading = atan2d( - magnyc, magnxc ) 
 
The 6 measurements must be executed in fast succession, virtually at the same time. 
This makes up a snapshot of the current attitude and magnetic field. All 
measurements are belonging together. 
 
The error propagation of the equations allows to do the noise filtering either directly 
on the sensor outputs or later on intermediate results or even on the final heading. 
The result is about the same. 
The noise filtering is typically done on the sensor outputs. The reason is that the 
sensor outputs are usually sampled quite fast (faster than the change in attitude or at 
least tracking it very fast) while the display requires only a slow update rate. With the 
filter on the sensor outputs, the performance critical trigonometric calculations are 
done only with the dispay update rate. 
 
The noise filter is primarily intended to cancel out the noise. This could be done by 
simple averaging. With damping I mean the more tricky part to achieve that the 
displayed heading nicely follows the compass/vehicle movement (like a liquid 
damped mechanical compass). Damping can be combined with the noise filter or 
implemented later, working on the final heading for example. 
 
Offset and gain error compensation is done with the values from the compass 
calibration. In its simplest form (an offset and a factor for each axis) it makes up for 
the linear and time-invariant deviations of the hardware. 
 
Applying offsets and scaling each axis separately provides also a simple way to 
calibrate for soft and hard iron effects of the compass environment. This method is 
sufficient in a lot of environments (environments producing the typical Lissajous-
formed deviation in the xy-plane). 
 
To avoid division by 0 measurements with accz = 0 are simply discarded. accz = 0 
means roll and/or pitch = +-90 degrees. This is above the limit we considered to be 
useful for vehicles/handhelds. pitch = +- 90 degrees leads to accy = accz = 0 and 
thus roll can't be determined from sensor outputs. On one hand it's pretty useless 
anyway. In practice getting exactly 0 from the sensors happens quite seldom. So 
think of it as a measure to get the software bulletproof. 
 
Acceleration of the vehicle itself will lead to a false tilt detection. It is assumed that 
the vehicle acceleration is small and/or from short duration. The plausibility check 
avoids false tilt detection. If the magnitude of the acceleration measured is not close 
to 1g, the current measurement is discarded. It is not entering the noise filter. 
 
As discussed in part 3, noise sensitivity is very high near the poles of the 
trigonometric functions. Limiting the operation to about +-80 degrees is acceptable 
for vehicles/handhelds. Otherwise, however, more effort is needed to get around the 
noise near the poles of the trigonometric functions. 
 



All the stuff discussed for a possible implementation taking various error sources into 
account is simulated by the script 
implementation 
 

 
 
The script calculates and displays the expected heading error over the full range of 
angles. 
 

 
 

I hope this was not too scary. I tried to shed light on every corner of the tilt 
compensation, and to provide you with simulation models for your own 
experiments. Hopefully I got you to a point where you are now able to work 
successfully on your projects. 
Good Luck :-) 


